Lipschitz stability of optimal controls for the steady - state Navier - Stokes equations
نویسنده
چکیده
An optimal control problem with quadratic cost functional for the steady-state Navier-Stokes equations with no-slip boundary condition is considered. Lipschitz stability of locally optimal controls with respect to certain perturbations of both the cost functional and the equation is proved provided a second-order sufficient optimality condition holds. For a sufficiently small Reynolds number, even global Lipschitz stability of the unique optimal control is shown.
منابع مشابه
Regularity and stability of optimal controls of nonstationary Navier-Stokes equations
Abstract: The regularity and stability of optimal controls of nonstationary Navier-Stokes equations are investigated. Under suitable assumptions every control satisfying first-order necessary conditions is shown to be a continuous function in both space and time. Moreover, the behaviour of a locally optimal control under certain perturbations of the cost functional and the state equation is inv...
متن کاملState-Constrained Optimal Control of the Stationary Navier-Stokes Equations
In this paper, the optimal control problem of the stationary Navier-Stokes equations in the presence of state constraints is investigated. We prove the existence of an optimal solution and derive first order necessary optimality conditions. The regularity of the adjoint state and the state constraint multiplier is also studied. Finally, the Lipschitz stability of the optimal control, state and ...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملAn Extended Domain Method for Optimal Boundary Control for Navier-stokes Equations
The matching velocity problem for the steady-state Navier-Stokes system is considered. We introduce an extended domain method for solving optimal boundary control problems. The Lagrangian multiplier method is applied to the extended domain with distributed controls and used to determine the optimality system and the control over the boundary of the inner domain. The existence, the differentiabi...
متن کاملState-constrained Optimal Control of the Three-dimensional Stationary Navier-stokes Equations
In this paper, an optimal control problem for the stationary NavierStokes equations in the presence of state constraints is investigated. Existence of optimal solutions is proved and first order necessary conditions are derived. The regularity of the adjoint state and the state constraint multiplier is also studied. Lipschitz stability of the optimal control, state and adjoint variables with re...
متن کامل